

Welcome to labelx’s documentation!

Contents:

	Overview
	Features

	Installation
	Linux/macOS

	Windows

	Install from Github

	Dependencies

	Tutorials
	Getting help

	Turning on debug

	Creating Labels

	Using user defined labels

	Creating Badges

	Using user defined badges

	API References

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	History
	2.3.1 [30.03.2022]

	2.3.0 [30.03.2022]

	2.2.1 [28.03.2022]

	2.1.1 [19.06.2020]

	2.1.0 [19.06.2020]

	1.0.5 [19.06.2020]

	1.0.4 [02.04.2020]

	1.0.3 (unreleased) [30.03.2020]

Indices and tables

	Index

	Module Index

	Search Page

Overview

labelx is a label generator for GitLab project issues and merge requests. Often
project owner or maintainer needs to create different issue labels for multiple projects
and it takes time and it’s a monotonous work. labelx can simplify that task of
creating labels.

Features

	Show package information

	Create labels for GitLab projects

	Create badges for GitLab projects

Installation

Labelx (labelx) requires Python 3.6, 3.7 or 3.8. If you do not already have a
Python environment configured on your computer, please see the
Python [https://www.python.org] page for instructions on installing Python
environment.

Note

if you are on Windows and want to install optional packages (e.g., scipy) then you
will need to install a python distribution such as
Anaconda [https://www.anaconda.com],
Enthought Canopy [https://www.enthought.com/product/canopy]
or Pyzo [https://www.pyzo.org]. If you use one of these Python distributions,
please refer to their online documentation.

Assuming that the default python environment is already configured on your computer and
you intend to install labelx inside of it. To create and work with Python virtual
environments, please follow instructions on
venv [https://docs.python.org/3/library/venv.html] and
virtual environments [http://docs.python-guide.org/en/latest/dev/virtualenvs/]

To start the installation process, please make sure the latest version of pip
(python3 package manager) is installed. If pip is not installed, please refer to
the Pip documentation [https://pip.pypa.io/en/stable/installing/] and install
pip first.

Linux/macOS

Install the latest release of labelx with pip:

pip install labelx

To upgrade to a newer version use the --upgrade flag:

pip install --upgrade labelx

If system wide installation is not possible for permission reasons, use --user
flag to install labelx for current user

pip install --user labelx

Windows

labelx should support windows cmd out of the box. But if you face any issues,
please refer to the hint below -

Hint

Windows terminal (cmd/power shell) doesn’t support all the unicode codecs and To get
the best results - please use a terminal emulator like,
cmder [Download Cmder [http://cmder.net/]] or ConEmu
[Download ConEmu [https://conemu.github.io/]]. Please use <xterm> color scheme
from settings menu, for the best visual representation of the program.

Considering python3 is installed and pip is configured.

Open Cmder/ConEmu and Type:

pip install labelx

Or

python3 setup.py install

This command should install labelx with all the required dependencies.

Install from Github

Alternatively, labelx can be installed manually by downloading the current version
from GitHub [https://github.com/dalwar23/labelx] or
PyPI [https://pypi.org/project/labelx/]. To install a downloaded versions, please
unpack it in a preferred directory and run the following commands at the top level of
the directory:

pip install .

or run the following:

python3 setup install

Dependencies

This package requires a configuration file in either .yaml or yml format. The
look up priority for the configuration file is as following-

	<user_home_directory>/.config/<package_name>/config.yaml (Window/Linux/MacOS)

	<current_working_directory>/<package_name>/config.yaml (Windows/Linux/MacOS)

	/etc/<package_name>/config.yaml (Linux/MacOS)

If config.yaml doesn’t exists in one of these locations, the program will NOT run.
So, to create the configuration file, please use -

Windows

Windows system by default doesn’t allow creation of . prefixed directory from GUI,
so use the following -

	Open cmd and change the directory to the home folder of the user

	Run mkdir .config (if the folder doesn’t exist)

	Run cd .config

	Run mkdir labelx

Now that the . prefixed directory is created, use the GUI to add a file in
labelx directory named config.yaml. Once the file is created, open the file
and add the following lines according to your settings -

login:
 host: <gitlab_server>
 protocol: <https>/<http>
 token: <secret_access_token_from_gitlab_profile>

Linux/MacOS

	Open a terminal and cd into the home directory or any other directory form the
above dependency list.

	Run mkdir -p .config/labelx

	Run cd .config/labelx/

	Run nano config.yaml

	Add the above lines into the file and save it

Tutorials

Tip

Always remember, when in doubt use --help.

Getting help

To see the options use --help flag after the command.

labelx --help

This should output the help information on screen and it looks something similar as
below -

Usage: labelx [OPTIONS] COMMAND [ARGS]...

GitLab label creator control panel

Options:
 --debug Turns on DEBUG mode. [default: False]
 --version Show the version and exit.
 --help Show this message and exit.

Commands:
 create-badges Create badges for project.
 create-labels Create labels for issues and merge requests.
 pkg-info Shows package information.

To checkout individual options for any command use --help flag.

labelx pkg-info --help

This command should show all the available arguments for info sub-command.

Usage: labelx pkg-info [OPTIONS]

 Prints information about the package

Options:
 --help Show this message and exit.

Turning on debug

Sometimes program runs into ERROR and there are not enough data shown on screen to
determine the cause of the ERROR. For getting verbose output of all the actions
done by the program simply turn on the debug mode with --debug flag.
By default it’s turned off.

To turn on debug mode -

labelx --debug create-labels [OPTIONS] [ARGS]

Also you can turn on the debug mode at sub-command level by using --debug
flag after the sub-command

labelx create-labels [OPTIONS] [ARGS] --debug

OR like this -

labelx create-labels --debug [OPTIONS] [ARGS]

Creating Labels

To create default labels, use the following command -

labelx create-labels -p [gitlab project id]

To create group labels use -g flag

labelx create-labels -g [gitlab group id]

Example

labelx create-labels -p 12345

This command should run the program with preset labels and create these labels
in the project mentioned. Output should be something similar -

(output is from version 2.1.1)

+--+
| labelx |
+--+
| about: GitLab label/badge creator |
| author: Dalwar Hossain (dalwar23@pm.me) |
| version: 2.1.1 |
| license: GNU General Public License v3 |
| documentation: https://labelx.readthedocs.io/ |
+--+

[*] Initializing.....
[*] Please use 'labelx --help' to see all available options
-------------------------------------- [labelx] --
[$] Creating label - [Bug] DONE
[$] Creating label - [Done] DONE
[$] Creating label - [Feature Upgrade] DONE
[$] Creating label - [Fixed] DONE
[$] Creating label - [New Feature Request] DONE
[$] Creating label - [On Hold] DONE
[$] Creating label - [P1] DONE
[$] Creating label - [P2] DONE
[$] Creating label - [P3] DONE
[$] Creating label - [Planned] DONE
[$] Creating label - [Source Code Refactoring] DONE
[$] Creating label - [Testing] DONE
[$] Creating label - [WIP] DONE
[$] Creating label - [Won't Fix] DONE
-------------------------------------- Goodbye! --

Using user defined labels

Note

When using user defined labels, the builtin labels will be ignored.

To create user defined labels, use -f or --labels option with an argument of a
valid yaml file path that contains label information. E.g.

labelx create-labels -p 1234 -f ~/labels.yaml

OR

labelx create-labels -g 23 --labels ~/my/vey/nested/file/path/to/labels.yaml

Example labels.yaml file

Test1:
 color: "#FF0000"
 description: A test label
 description_html: ''
 text_color: "#FFFFFF"
 subscribed: false
 priority: 0
 is_project_label: true
Test2:
 color: "#0033CC"
 description: Second test label
 description_html: ''
 text_color: "#FFFFFF"
 subscribed: false
 priority: 1
 is_project_label: true
Test3:
 color: "#AD4363"
 description: Third test label
 description_html: ''
 text_color: "#FFFFFF"
 subscribed: false
 priority:
 is_project_label: true

Creating Badges

To create default badges, use the following command -

labelx create-badges -p [gitlab project id]

To create group badges use -g flag with numeric group id.

labelx create-badges -g [gitlab group id]

Note

Group badges require owner permission for the group in context.

Example

labelx create-badges -p 1245

This command should run the program with preset badges and create these badges
in the project mentioned. Output should be something similar -

(output is from version 2.1.1)

+--+
| labelx |
+--+
| about: GitLab label/badge creator |
| author: Dalwar Hossain (dalwar23@pm.me) |
| version: 2.1.1 |
| license: GNU General Public License v3 |
| documentation: https://labelx.readthedocs.io/ |
+--+

[*] Initializing.....
[*] Please use 'labelx --help' to see all available options
-------------------------------------- [labelx] --
[$] Creating badge - [license] DONE
[$] Creating badge - [platform] DONE
[$] Creating badge - [windows] DONE
[$] Creating badge - [linux] DONE
[$] Creating badge - [macos] DONE
[$] Creating badge - [python] DONE
[$] Creating badge - [style] DONE
[$] Creating badge - [layout] DONE
-------------------------------------- Goodbye! --

Using user defined badges

Note

When using user defined badges, the builtin badges will be ignored.

To create user defined badges, use -f or --badges option with an argument of a
valid yaml file path that contains badge information. E.g.

labelx create-badges -p 143 -f ~/badges.yaml

OR

labelx create-badges -g 23 --badges ~/my/vey/nested/file/path/to/badges.yaml

Example badges.yaml file

license:
 link_url: "%{project_path}/LICENSE"
 image_url: "https://img.shields.io/badge/License-MIT-blue.svg?style=flat-square"
 position: 0
platform:
 link_url: "%{project_path}"
 image_url: "https://img.shields.io/badge/Platform-cc3300?style=flat-square"
 position: 1
windows:
 link_url: "%{project_path}"
 image_url: "https://img.shields.io/badge/Windows-blue?style=flat-square&logo=windows"
 position: 2
linux:
 link_url: "%{project_path}"
 image_url: "https://img.shields.io/badge/Linux-333?style=flat-square&logo=linux"
 position: 3

Important

%{project_path} will translated into the project’s path by labelx for project specific
badges only. For groups, It is recommended not to use GITLABPLACEHOLDERTOKENS like
%{project_path} or %{project_id}.

API References

API references are not available at this moment. In future release, it will be
available.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/dalwar23/labelx/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

labelx could always use more documentation, whether as part of the
official labelx docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dalwar23/labelx/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up labelx for local development.

	Fork the labelx repo on GitHub.

	Clone your fork locally

$ git clone git@github.com:your_name_here/labelx.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper
installed, this is how you set up your fork for local development

$ mkvirtualenv labelx
$ cd labelx/
$ python setup.py develop

	Create a branch for local development

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox

$ flake8 labelx tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10, and for PyPy.

History

2.3.1 [30.03.2022]

	Fix dependency issue in setup.py Issue #13 [https://github.com/dalwar23/labelx/issues/13]

2.3.0 [30.03.2022]

	Updated documentation

	Added group level support for labels and badges

	Updated tests

	Fixed spelling mistakes

	Minor console output changes

2.2.1 [28.03.2022]

	Add group level badges and labels

	Fix version upgrade bug

	Update documentation

2.1.1 [19.06.2020]

	Fixed bug with license badge

	Updated readme and docs

2.1.0 [19.06.2020]

	Fixed bug with link_url

	Changed look and feel

1.0.5 [19.06.2020]

	Create badges with default values

	Added tests

	Fixed formatting

1.0.4 [02.04.2020]

	Create labels with default values

	Show package information

	Added more tests

	Re-newed documentation

1.0.3 (unreleased) [30.03.2020]

	Show package information

	Added test cases

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to labelx’s documentation!

 		
 Overview

 		
 Features

 		
 Installation

 		
 Linux/macOS

 		
 Windows

 		
 Install from Github

 		
 Dependencies

 		
 Tutorials

 		
 Getting help

 		
 Turning on debug

 		
 Creating Labels

 		
 Using user defined labels

 		
 Creating Badges

 		
 Using user defined badges

 		
 API References

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 History

 		
 2.3.1 [30.03.2022]

 		
 2.3.0 [30.03.2022]

 		
 2.2.1 [28.03.2022]

 		
 2.1.1 [19.06.2020]

 		
 2.1.0 [19.06.2020]

 		
 1.0.5 [19.06.2020]

 		
 1.0.4 [02.04.2020]

 		
 1.0.3 (unreleased) [30.03.2020]

_static/file.png

_static/minus.png

_static/plus.png

